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CHAPTER 1

Getting started

DHNx is a toolbox for optimization and simulation of district heating and cooling systems.

Contents

• Using DHNx

• Contributing to DHNx

1.1 Using DHNx

1.1.1 Installation

If you have a working Python3 environment, use pypi to install the latest oemof version:

pip install dhnx

For Installing the latest (dev) version, clone DHNx from github:

git clone https://github.com/oemof/DHNx.git

Now you can install it your local version of DHNx using pip:

pip install -e <path/to/DHNx/root/dir>

Note: DHNx uses geopandas and osmnx as extra requirements for some functions related to the processing of spatial
data. On Windows machines, you might encounter troubles installing geopandas via pip install geopandas.
Try to install geopandas in an EMTPY environment with conda install geopandas, first. And second, install
osmnx with pip install osmnx (tested with Python 3.8). Also check geopandas.org.
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1.1.2 Examples

Examples are provided here. Also, have a look at the Examples section for some more explanation.

1.2 Contributing to DHNx

Contributions are welcome. You can write issues to announce bugs or errors or to propose enhancements. Or you can
contribute a new approach that helps to model district heating/cooling systems. If you want to contribute, fork the
project at github, develop your features on a new branch and finally open a pull request to merge your contribution to
DHNx.

As DHNx is part of the oemof developer group we use the same developer rules, described here.
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CHAPTER 2

Examples

2.1 Create a thermal network

from dhnx.network import ThermalNetwork

thermal_network = ThermalNetwork()

thermal_network.add('Producer', id=0, lat=50, lon=10)

thermal_network.add('Consumer', id=0, lat=50, lon=10)

thermal_network.add('Pipe', id=0, from_node='producers-0', to_node='consumers-0')

print(thermal_network)

# returns
# dhnx.network.ThermalNetwork object with these components
# * 1 producers
# * 1 consumers
# * 1 pipes

print(thermal_network.components.pipes)

# returns
# from_node to_node
# 0 producer-0 consumer-0

3
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CHAPTER 3

Thermal Network

The thermal network is the central object in DHNx. It provides a container class that holds a number of components.
All available components are defined in components.csv, which is rendered in the following table.

component_class list_name description
Environment environment Environment
Producer producers Heat producer
Consumer consumers Heat consumer
Fork forks Node where several pipes meet
Pipe pipes Pipes representing double pipes (feed and return) that connect nodes

Every component has a number of attributes which are defined in components_attrs/. Each attribute is given a name,
type (int, float, str etc.), unit, default value, a description, a status (Input or Output) and requirement
(required or optional).

The attributes are presented in detail in the following sections.

3.1 Consumer

Consumers are the nodes where the heat provided by the district heating network is actually used. They are character-
ized by these attributes:
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attribute type unit default description sta-
tus

require-
ment

id int n/a n/a Unique id Input required
compo-
nent_type

str – Con-
sumer

Component type Input optional

lat float n/a n/a Geographic latitude Input optional
lon float n/a n/a Geographic longitude Input optional
mass_flow float/sequence kg/s n/a Mass flow Input optional
delta_temp_dropfloat/sequence kg/s n/a Temperature drop from inlet to return Input optional
zeta_inlet float – n/a Localized pressure loss coefficient for in-

let flow
Input optional

zeta_return float – n/a Localized pressure loss coefficient for re-
turn flow

Input optional

3.2 Producer

A producer is a general node that provides heat to the district heating network. Producers are described with the
following attributes:

attribute type unit de-
fault

description sta-
tus

require-
ment

id int n/a n/a Unique id Input required
compo-
nent_type

str – Pro-
ducer

Component type Input optional

lat float n/a n/a Geographic latitude Input optional
lon float n/a n/a Geographic longitude Input optional
temp_inlet float/sequencedeg C or

K
n/a Inlet temperature at producer Input optional

zeta_inlet float – n/a Localized pressure loss coefficient for
inlet flow

Input optional

zeta_return float – n/a Localized pressure loss coefficient for
return flow

Input optional

3.3 Fork

Forks are the nodes where several pipes of the network meet. Forks have the attributes described in the following
table:
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attribute type unit de-
fault

description sta-
tus

require-
ment

id int n/a n/a Unique id Input required
compo-
nent_type

str – Fork Component type Input optional

lat float n/a n/a Geographic latitude Input optional
lon float n/a n/a Geographic longitude Input optional
zeta_inlet float – n/a Localized pressure loss coefficient for inlet

flow
Input optional

zeta_return float – n/a Localized pressure loss coefficient for return
flow

Input optional

3.4 Pipe

Pipes imply the feed and return pipes connecting the different nodes of the network. They are characterized by these
attributes:

attribute type unit default description status requirement
id int n/a n/a Unique id Input required
component_type str – Pipe Component type Input optional
from_node int n/a n/a Node where Pipe begins Input required
to_node int n/a n/a Node where Pipe ends Input required
length float m n/a Length of the Pipe Input optional
diameter float mm n/a Inner diameter of the pipes Input optional
heat_transfer_coeff float W/(m*K) n/a Heat transfer coefficient Input optional
roughness float mm n/a Roughness of pipes Input optional

3.4. Pipe 7
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CHAPTER 4

Geometry preparation

For setting up a ThermalNetwork, you need to prepare your input data somehow. Therefore, the dhnx package provides
some helpful modules and function with the geometry processing modules, see connect_points, especially the
dhnx.gistools.connect_points.process_geometry().

The example folder included in this repository also contains the import_osm_invest example, that provides an illus-
trative introduction on how to use and prepare your geometry based on open street maps data (See `examples/
investment_optimisation/import_osm_invest`).

9
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CHAPTER 5

Optimisation models

Generally, this library should allow the optimisation of district heating grids with various configurations settings and
different approaches. The optimisation methods of this library are tools to assist the planning process of DHS projects
and to analyze the economic feasibility of DHS for a given district, community or city - either by focusing on the DHS
itself, or by also considering the overall energy system of a district, which could not just be the heating sector, but also
the electricity, mobility sector or the gas infrastructure.

At the moment, there is one approach using oemof-solph as linear optimisation library implemented. This approach is
explained in the following sections. It totally makes sense to have some experiences with oemof-solph to understand
this toolbox more easily.

5.1 Scope

The following questions can be addressed using the optimize_investment method of the ThermalNetwork:

• What is the cost-optimal topology and dimensioning of a DHS piping system, given the locations of potential
central heat supply plants, the potential locations for the DHS piping system (e.g. street network), and the
position of consumers?

• In addition to the first question, what is the cost-optimal expansion of a given DHS system?

• Is it cost-efficient to build a DHS at all, if there a consumer-wise heat supply alternatives? (Comparison of
central and de-central supply strategies)

• What is the optimal dispatch of the heat producers? (In case there are no expansion options, but just existing
DHS pipes)

• Planned: Streets-wise aggregation option

To answer these questions, at the moment, the LP and MILP optimisation library oemof.solph is used. Other ap-
proaches, e.g. heuristic approaches, might follow.

The following sections will give an overview about the general usage/workflow, (the necessary input data, the different
optimisation settings and options, the results), and second, the underlying mathematical description.
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5.2 Usage

Links to the subsections:

• Overview

• Input Data

• Label systematic

• Results

5.2.1 Overview

The optimisation of a given ThermalNetwork is executed by:

import dhnx

tnw = dhnx.network.ThermalNetwork()

tnw = network.from_csv_folder('path/to/thermal_network')

invest_opt = dhnx.input_output.load_invest_options('path/to/invest_options')

tnw.optimize_investment(invest_options=invest_opt)

For executing an optimisation, you must provide investment options additional to the previous data, which defines a
ThermalNetwork. Both are explained in the following section.

5.2.2 Input Data

In this section, it is firstly revised, what input data is exactly necessary from the ThemalNetwork class, and then
explained, what data needs to be provided as investment options, and what optimisation settings you can apply.

The following figure provides an overview of the input data:

Fig. 1: Fig. 1: Optimisation Input Data

The structure of the input data might look a bit confusing at the beginning, but provides a lot of options for building
up complex district heating models. There are two groups of data: Firstly, data that describes the components and the
connectivity of the network, required by the ThermalNetwork class. Secondly, data that is necessary for the investment
optimization. For now, all data needs to be provided in csv files. This means that you do not need to provide a geo-
reference for applying an district heating network optimisation model at all. Probably, in many cases, it is the export
of four geo-referenced layers (e.g. geopandasdataframe, shp-file, or any other), which are a line layer representing
the potential places for the DHS-trenches, and three point layers for the producers, the consumers, and the potential
forks of the DHS system. All geometry information of the network system is passed by an id for each element. Thus,
the line layer connects all points and provides the spatial relation with the attributes from_node, to_node, and length.
If you prepare the data, be careful that every consumer is connected to an pipe, and every piping network system is
connected to at least one producer.

ThermalNetwork

The data for the ThermalNetwork must be provided in the structure as defined for the .csv reader. The following data
is required for applying an optimisation:

12 Chapter 5. Optimisation models
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tree
pipes.csv # (required)
consumers.csv # (required)
forks.csv # (required)
producers.csv # (required)
sequences # (optional)

consumers-heat_flow.csv

The attributes, which are required, and which are optional with respect to the optimisation, are presented in detail in
the following:

Pipes

The basis for the district heating system optimisation is a table of potential pipes. The following attributes of the
ThermalNetwork must be given:

• id: see Thermal Network

• from_node: see Thermal Network

• to_node: see Thermal Network

• length: see Thermal Network

The following attributes are additional attributes of the optimisation module. These attributes are optional for the
optimisation:

attribute type unit default description status requirement
existing bool n/a 0 Binary indicating and existing pipe Input optional
capacity float kW 0 Capacity for existing pipe Input optional
hp_type object n/a ‘nan’ Type_label of existing pipe Input optional
active bool n/a 1 Binary indicating that edge is available Input optional
add_fix_costs float Eur/m 0 Additional fix investment costs Input optional

• existing: Binary indicating an existing pipe. If there is no column existing given, all Pipes are free for optimisa-
tion.

• capacity: Capacity of existing pipes. If existing is True, a capacity must be given.

• hp_type: Label of the type of pipe. The hp_type refers to a set of parameters of a pipeline component. The
parameters for the hp_type must be given in the following table (see network/pipes.csv). If existing is True, a
hp_type must be given.

• active: Binary indicating that this pipe is considered. If no column active is given, all pipe-options are active.
With this attribute, single pipes can be switched on and off. This can be very useful, if different scenarios should
be analyzed, e.g. you might like to make a given street/pipes unavailable.

Consumers

The following attributes of the ThermalNetwork must be given:

• id: see Thermal Network

The following attributes are additional attributes of the optimisation module, and optional:

5.2. Usage 13
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attribute type unit default description status requirement
active bool n/a 1 Binary indicating that consumer is active Input optional
P_heat_max float kW n/a Maximum heat load of consumer Input optional

• active: Binary indicating that consumer-xy is considered. If no column active is given, all consumers are
active. With this attribute, single consumers can be switched on and off (e.g. for scenario analysis with different
connection quotes).

• P_heat_max: Maximum heat load of consumer. If no column P_heat_max is given, the maximum heat load is
calculated from the heat demand series (see consumers-heat_flow.csv). Depending on the optimisation setting,
P_heat_max or the demand series is used for the optimisation (see Optimisation settings for further information).

Producers

The following attributes of the ThermalNetwork must be given:

• id: see Thermal Network

The following attributes are additional attributes of the optimisation module, and optional:

attribute type unit default description status requirement
active bool n/a 1 Binary indicating that producer is active Input optional

• active: Binary indicating that producer is active. If no column active is given, all producers are active. With
this attribute, single producers can be switched on and off (e.g. for scenario analysis for different supply plant
positions.

Forks

The following attributes of the ThermalNetwork must be given:

• id: see Thermal Network

For Forks, no additional required or optional attributes are needed by the optimisation module.

Consumers-heat_flow

Providing consumers heat flow time series is optional, but either the consumers demand must be given in form of
P_heat_max as attribute of the consumers, or in form of a heat_flow time series with the minimum length of 1.

The following table shows an example of a consumers-heat_flow:

timestep 0 1
0 8 12
1 10 10
2 9 7

The column index must be the consumers id (And be careful that the dtype also matches the id of the consumers!).
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Investment and additional options

If you want to do an investment or an simple unit commitment optimisation using the optimize_investment() method
of the ThermalNetwork, you need to provide some additional data providing the investment parameter. The following
sheme illustrates the structure of the investment input data:

tree
network

| pipes.csv # (required)
|

consumers
| bus.csv # (required)
| demand.csv # (required)
| source.csv # (optional)
| storages.csv # (optional)
| transformer.csv # (optional)
|

producers
bus.csv # (required)
demand.csv # (optional)
source.csv # (required)
storages.csv # (optional)
transformer.csv # (optional)

The investment input data provides mainly all remaining parameters of the oemof solph components, which are not
specific for a single pipe, producer or consumer.

The minimum of required data is a specification of the pipe parameters (costs, and losses), a (heat) bus and a heat
demand at the consumers, and a (heat) bus and a heat source at the producers. The detailed attributes are described in
the following sections.

network/pipes.csv

You need to provide data on the investment options for the piping system. The following table shows the minimal
required data you need to provide:

label_3 ac-
tive

noncon-
vex

l_factor l_factor_fix cap_max cap_min capex_pipes fix_costs

pipe-typ-
A

1 0 0 0 100000 0 0.5 0

Each row represents an investment option. Note this investment option creates an oemof-solph Heatpipeline compo-
nent for each active pipe. The units are given es examples. There are no units implemented, everybody needs to care
about consistent units in his own model. At the same time, everybody is free to choose his own units (energy, mass
flow, etc.).

• label_3: Label of the third tag. See Label system.

• active: (0/1). If active is 0, this heatpipeline component is not considered. This attribute helps for easy selecting
and deselecting different investment options.

• nonconvex: (0/1). Choose whether a convex or a nonconvex investment should be performed. This leads to a
different meaning of the minimum heat transport capacity (cap_min). See P_heat_max is given, the maximum
heat load is calculated from the heat demand series (see consumers-heat_flow.csv). Depending on the optimisa-
tion setting, P_heat_max or the demand series is used for the optimisation (see oemof-solph documentation for
further information).

5.2. Usage 15
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• l_factor: Relative thermal loss per length unit (e.g. [kW_loss/(m*kW_installed)]. Defines the loss factor
depending on the installed heat transport capacity of the pipe. The l_factor is multiplied by the invested capacity
in investment case, and by the given capacity for a specific pipe in case of existing DHS pipes.

• l_factor_fix: Absolute thermal loss per length unit (e.g. [kW/m]). In case of nonconvex is 1, the l_factor_fix
is zero if no investement in a specific pipe element is done. Be careful, if nonconvex is 0, this creates a fixed
thermal loss.

• cap_max: Maximum installable capacity (e.g. [kW]).

• cap_min: Minimum installable capacity (e.g. [kW]). Note that there is a difference if a nonconvex investment
is applied (see oemof-solph documentation for further information).

• capex_pipes: Variable investment costs depending on the installed heat transport capacity (e.g. [C/kW]).

• fix_costs: Fix investment costs independent of the installed capacity (e.g. [C])

See the Heatpipeline API for further details about the attributes.

consumers/.

All data for initialising oemof-solph components at the consumers are provided by the .csv files of the consumers
folder. For a principal understanding, check out the excel reader example of oemof-solph, which works the same way:
oemof-solph excel reader example.

The minimum requirement for doing an DHS optimisation is to provide an demand at the consumers. Therefore,
you need the following two .csv files: bus.csv specifies the oemof-solph Bus components, and demand.csv defines the
oemof.solph.Sink.

Table 1: Example for table of Buses
label_2 active excess shortage shortage costs excess costs
heat 1 0 0 99999 99999

You must provide at least one bus, which has a label (label_2, see Label system), and needs to be active. Optionally,
you can add an excess or a shortage with shortage costs or excess costs respectively. This might help to get an feasible
optimisation problem, in case your solver says, ‘infeasible’, for finding the error.

Table 2: demand.csv
label_2 active nominal_value
heat 1 1

The demand also needs to have a label (label_2, see Label system), has the option for deactivating certain demands
by using the attribute active, and needs to have a specification for the nominal_value. The nominal_value scales your
demand.

producers/.

The producers look quite similar as the consumers. The consumers are taking energy from the DHS system. That
means, the energy need to be supplied somewhere, which makes some kind of source necessary. To connect a source
in the oemof logic, there needs to be a oemof.solph.Bus to which the source is connected. The two files bus.csv and
source.csv need to be provided:
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Table 3: Example for table of Buses
label_2 active excess shortage shortage costs excess costs
heat 1 0 0 99999 99999

The bus.csv table works analog to the consumers (see consumers/.).

Table 4: source.csv
label_2 active
heat 1

You need to provide at least one source at the source.csv table. Additionally, there are already a couple of options for
adding additional attributes of the oemof.solph.FLow to the source, e.g. variable_costs, fix feed-in series, and min and
max restrictions.

Generally, with this structure at every producer and consumer multiple oemof components, like transformer and
storages can be already added.

Optimisation settings

The following table shows all options for the optimisation settings (See also setup_optimise_investment()):

attribute type default description
heat_demand str ‘scalar’ ‘scalar’ or ‘series’. ‘scalar’: Peak heat load. ‘series’: time-series is used as heat

demand.
simultaneity float 1 Simultaneity or concurrency factor
num_ts int 1 Number of time steps of optimisation
time_res float 1 Time resolution
start_date str ‘1/1/2018’ Startdate for oemof optimisation
frequence str ‘H’ Lenght of period
solver str ‘cbc’ Name of solver
solve_kw dict {‘tee’:

True}
Solver kwargs

bidirec-
tional_pipes

bool False Bidirectional pipes leads to bi-directional flow attributes at the heatpipeline
components {‘min’: -1, bidirectional: True}

dump_path str None If a dump path is provided, the oemof dump file is stored.
dump_name str dump.oemofName of dump file
print_logging_infobool False There are still some helpful print statements.
write_lp_file bool False Option of writing lp-file. The lp-file is stored in ‘User/.oemof/lp_files/DHNx.lp’

Some more explanation:

• heat_demand: If you set heat_demand to ‘scalar’, num_ts is automatically 1, and the peak heat load is used as
heat demand for the consumers. If you want to use a time series as heat demand, apply ‘series’.

5.2.3 Label systematic

In order to access the oemof-solph optimisation results, a label systematic containing a tuple with 4 items is used.
Please check the basic example of oemof-solph for using tuple as label (oemof-solph example tuple as label).

The following table illustrates the systematic:
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Table 5: Labelling system (bold: obligatory; italic: examples)
tag1: general classifica-
tion

tag2: commod-
ity

tag3: specification / oemof ob-
ject

tag4: Specific id

consumers heat source forks-34
producers electricity demand consumers-15
infrastructure gas excess prdocuers-4

hydrogen shortage forks-14-forks-27
pipe-typ-A forks-24-consumers-

122
storage_xy
boiler_typ_xy

The labels are partly given automatically by the oemof-solph model builder:

• tag1: general classification: This tag is given automatically depending on the spatial belonging. Tag1 can be
either consumers (consumer point layer), producers (producer point layer) or infrastructure (pipes and forks
layer). See Thermal Network.

• tag2: commodity: This tag specifies the commodity, e.g. all buses and transformer (heatpipelines) of the DHS
pipeline system have automatically the heat as tag2. For a transformer of the consumers or the producers the
tag2 is None, because a transformer usually connects two commodities, e.g. gas –> heat.

• tag3: specification / oemof object: The third tag indicates either the oemof object and is generated auto-
matically (this is the case for demand.csv, source.csv and bus.csv), or is the specific label_3 of the pipes.csv,
transformer.csv or storages.csv.

• tag4: id: The last tag shows the specific spatial position and is generated automatically.

5.2.4 Results

For checking and analysing the results you can either select to write the investment results of the heatpipeline compo-
nents in the Thermalnetwork. You will find the results there:

# pipe-specific investment results
results = network.results.optimization['components']['pipes']

The following tables provides an overview of the results table:
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at-
tribute

type unit description sta-
tus

id ob-
ject

n/a Unique id (see pipes of network) In-
put

from_nodeob-
ject

n/a Node where Edge begins (see pipes of network) In-
put

to_nodeob-
ject

n/a Node where Edge ends (see pipes of network) In-
put

length float m Length of pipe (see pipes of network) In-
put

hp_typeob-
ject

n/a Label of pipe which got selected from network/pipes.csv Re-
sult

ca-
pac-
ity

float kW Installed pipe capacity Re-
sult

di-
rec-
tion

float -
1/0/1

Flow direction of pipe: 1 if direction corresponds to the from_node/to_node notation.
-1: opposite direction. 0: no investment. This works only if the setting option bidirec-
tional_pipes is set False.

Re-
sult

costs float Eur Total cost of pipe element. Re-
sult

losses float kW Total losses of pipe element. Re-
sult

You can also check out the detailed results of the oemof model, which are stored at:

# oemof-solph results "main"
r_oemof_main = network.results.optimization['oemof']

# oemof-solph results "meta"
r_oemof_meta = network.results.optimization['oemof_meta']

Or you can also dump the oemof results and analyze the results as described in oemof-solph handling results. The
labelling systematic will help you to easily get want you want, check Label system.

5.3 Introducing example

The following sections illustrates some features of the DHNx investment optimisation library.

You can execute and reproduce the example with all figures, check the introduction_example.

import matplotlib.pyplot as plt
import dhnx

# Initialize thermal network
network = dhnx.network.ThermalNetwork()
network = network.from_csv_folder('twn_data')

# Load investment parameter
invest_opt = dhnx.input_output.load_invest_options('invest_data')

# plot network
static_map = dhnx.plotting.StaticMap(network)

(continues on next page)
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(continued from previous page)

static_map.draw(background_map=False)
plt.title('Given network')
plt.scatter(network.components.consumers['lon'], network.components.consumers['lat'],

color='tab:green', label='consumers', zorder=2.5, s=50)
plt.scatter(network.components.producers['lon'], network.components.producers['lat'],

color='tab:red', label='producers', zorder=2.5, s=50)
plt.scatter(network.components.forks['lon'], network.components.forks['lat'],

color='tab:grey', label='forks', zorder=2.5, s=50)
plt.text(-2, 32, 'P0', fontsize=14)
plt.text(82, 0, 'P1', fontsize=14)
plt.legend()
plt.show()

The following figure shows the initial status of an (thermal) network, which is examined in the following sections:

Fig. 2: Fig. 2: Introduction example

The network of Fig. 2 consists of two options for the heat producers (“P0” and “P1”), eight consumers, and 11 forks.
Before running the whole script, we will have a brief look at some input data. Let’s start with the consumers.csv
(“twn_data/consumers.csv”):

Table 6: consumers.csv
id lat lon P_heat_max
0 30 40 15
1 10 40 18
2 10 60 25
3 30 70 36
4 50 60 25
5 90 40 12
6 60 10 50
7 60 30 20

A peak heating load P_heat_max is given for every consumer within the thermal network input data (see Thermal
Network Input). The heat load needs to be pre-calculated, or assumed. The geographical attributes lat and lon are
optional, but needed for plotting purpose. The next table shows the input data of the heat pipeline elements (“in-
vest_data/network/pipes.csv”):

Table 7: pipes.csv
label_3 ac-

tive
noncon-
vex

l_factor l_factor_fix cap_max cap_min capex_pipes fix_costs

pipe-typ-
A

1 0 0.00001 0 100000 0 2 0

In the simplest (and most approximate) case, a linear correlation between the thermal capacity and the investment costs
can be used. In this example, we assume costs of 2 C per kilowatt installed thermal capacity and meter trench length.
As maximum capacity cap_max, we take a very high value to make sure that the total heat load of all consumers (in-
cluding losses) can be supplied. Additionally, we assume a heat loss of 0.00001 kW/m. The parameters of the district
heating pipes need to be pre-calculated depending on the piping system and technical data sheet of the manufacturer.
(In future, some pre-calculation function might be added.) The length of each pipe, the costs and the losses are related
to, must be given in the pipes.csv table of the Thermal Network Input). Next, we optimise the network and get the
results:
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network.optimize_investment(invest_options=invest_opt)

# get results
results_pipes = network.results.optimization['components']['pipes']
print(results_pipes[['from_node', 'to_node', 'hp_type', 'capacity', 'heat_loss[kW]',

'invest_costs[C]']])

Since we do not have any other costs than investment costs, we can check if our results have been correctly processed
by comparing the objective of the optimisation problem with the sum of the investment costs of the single pipes, which
should be the same:

# sum of the investment costs of all pipes
print(results_pipes[['invest_costs[C]']].sum())

# objective value of optimisation problem
print(network.results.optimization['oemof_meta']['objective'])

Next, we can transfer the results to a ThermalNetwork, which contains only the pipes with an investment (to avoid
possible numerical inaccuracy, the criterion is > 0.001):

# assign new ThermalNetwork with invested pipes
twn_results = network
twn_results.components['pipes'] = results_pipes[results_pipes['capacity'] > 0.001]

Now, lets have a look at the optimisation results, and plot the pipes:

# plot invested pipes
static_map_2 = dhnx.plotting.StaticMap(twn_results)
static_map_2.draw(background_map=False)
plt.title('Given network')
plt.scatter(network.components.consumers['lon'], network.components.consumers['lat'],

color='tab:green', label='consumers', zorder=2.5, s=50)
plt.scatter(network.components.producers['lon'], network.components.producers['lat'],

color='tab:red', label='producers', zorder=2.5, s=50)
plt.scatter(network.components.forks['lon'], network.components.forks['lat'],

color='tab:grey', label='forks', zorder=2.5, s=50)
plt.text(-2, 32, 'P0', fontsize=14)
plt.text(82, 0, 'P1', fontsize=14)
plt.legend()
plt.show()

. . . which should give:

Fig. 3: Fig. 3: Pipes with investment

The next thing is to deactivate one heat producer by setting the attribute active of producer P1 to 0 (compare Thermal
Network Input):

Table 8: producers.csv
id lat lon active
0 30 0 1
1 0 80 0

Now, the plot of pipes with a positive investment should look like this:

There are many other options already implemented. For example:
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Fig. 4: Fig. 4: Pipes with investment (only P0)

• Using time series as heat demand

• Doing redundancy analysis by setting min and max attributes to the producers’ sources

• Adding other oemof-solph objects like Transformer, Storages, further Buses, Sinks and Sources to each producer
and consumer

• Using discrete pipe data by using the nonconvex investment options

Have fun!
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Simulation models

For a more detailed representation of temperature effects and pressure losses in the district heating network, linear
optimization models do not suffice. In this situation, a simulation model can be the right choice.

6.1 Scope

The following questions can be addressed using a simulation model:

• How do the heat losses in the network depend on the temperatures of inlet and return pipes and ambient temper-
ature?

• How much energy is necessary for the pumps to overcome the pressure losses in the network?

• How do these properties behave if the supply temperatures change?

To answer these questions, data has to be present or assumptions have to be made about the pipe’s physical properties
and the temperature drop at the consumers. Have a look at the overview table to learn about all the variables and
parameters involved.

Conversely, if these are not known, running an optimization model would be the better choice. It is also possible to
couple the two approaches, running an optimization first and then investigating the detailed physical behaviour. To
learn about this option, please refer to the section model coupling.

Currently, the available simulation model does not handle transient states (i.e. propagation of temperature fronts
through the pipes). The model evaluates a steady state of the hydraulic and thermal physical equations. This also means
that consecutive time steps are modelled independently and the behaviour of thermal storages cannot be represented.
A dynamic simulation model may be implemented at a later point in time.

6.2 Usage

To use DHNx for a simulation, you need to provide input data in a defined form. The basic requirements are the same
for all ThermalNetwork s, but some input data is specific to the simulation.
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tree
consumers.csv
pipes.csv
forks.csv
producers.csv
sequences

consumers-mass_flow.csv
consumers-delta_temp_drop.csv
environment-temp_env.csv
producers-temp_inlet.csv

To run a simulation, create a ThermalNetwork from the input data and simulate:

import dhnx

thermal_network = dhnx.network.ThermalNetwork('path-to-input-data')

thermal_network.simulate()

Figure 1 shows a sketch of a simple district heating network that illustrates how the variables that are determined in
a simulation model run are attributed to different parts of a network. Pipes have the attributes mass flows, heat losses
and pressure losses (distributed and localized). Temperatures of inlet and return flow are attributed to the different
nodes. Pump power belongs to the producers which are assumed to include the pumps. Variables that describe the
network as a whole are global heat losses and global pressure losses.

Fig. 1: Fig. 1: Schematic of a simple district heating network and the relevant variables for simulation.

The above-mentioned variables can be found in the results of a simulation, which come in the following structure:

results
global-heat_losses.csv
global-pressure_losses.csv
nodes-temp_inlet.csv
nodes-temp_return.csv
pipes-dist_pressure_losses.csv
pipes-heat_losses.csv
pipes_loc_pressure_losses.csv
pipes-mass_flow.csv
producers-pump_power.csv
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6.3 Underlying Concept

Name Math. symbol Unit Common values
Variables
mass flow �̇� 𝑘𝑔/𝑠
mean flow velocity 𝑣 𝑚/𝑠 1 − 3𝑚/𝑠
pressure 𝑝 𝑃𝑎 | 𝑏𝑎𝑟 Nominal pressures PN16 or PN25
pressure difference ∆𝑝 𝑃𝑎 | 𝑏𝑎𝑟 max. 300𝑃𝑎/𝑚
pump power 𝑃𝑒𝑙,𝑝𝑢𝑚𝑝 𝑊
temperature 𝑇 ∘𝐶 Inlet pipe: 70− 130∘𝐶, Return pipe: 50−

70∘𝐶
ambient temperature 𝑇𝑒𝑛𝑣

∘𝐶 10∘𝐶

heat flow �̇� 𝑊
Water properties
density 𝜌 𝑘𝑔/𝑚3 971.78 𝑘𝑔/𝑚3 at 80∘𝐶
spec. heat capacity 𝑐 𝐽/(𝑘𝑔𝐾) 4190 𝐽/(𝑘𝑔𝐾) at 80∘𝐶 and PN16 or

PN25
dynamic viscosity 𝜇 𝑘𝑔/(𝑚 ·

𝑠)
0.00035 𝑘𝑔/(𝑚 · 𝑠) at 80∘𝐶 and PN16 or
PN25

darcy friction factor 𝜆 –
Reynolds number 𝑅𝑒 –
Parameters
pipe’s length 𝐿 𝑚
pipe’s inner diameter 𝐷 𝑚𝑚 Nominal diameters DN25 - DN250
localized pressure loss coeffi-
cient

𝜁 – 𝜁𝑡𝑒𝑒,𝑠𝑝𝑙𝑖𝑡 = 2, 𝜁𝑡𝑒𝑒,𝑗𝑜𝑖𝑛 = 0.75

standard acceleration due to
gravity

𝑔 𝑚/𝑠2 9.81𝑚/𝑠2

altitude difference ∆ℎ 𝑚
pipe’s absolute surface rough-
ness

𝜖 𝑚𝑚 0.01𝑚𝑚

heat transfer coefficient 𝑈 (sometimes 𝑘) 𝑊/(𝐾𝑚2)
spec. heat loss per meter 𝑈𝑠𝑝𝑒𝑐 (sometimes just

𝑈 )
𝑊/(𝐾𝑚) 0.15 − 0.9𝑊/(𝐾𝑚)

pump efficiency 𝜂𝑝𝑢𝑚𝑝 – 0.7
electric pump efficiency 𝜂𝑒𝑙 –
hydraulic pump efficiency 𝜂ℎ𝑦𝑑 –

The following equations are related to a single pipe.

6.3.1 Hydraulic equations

A pressure difference between two ends of a pipe occurs because of three effects:

• distributed pressure losses along the pipe’s inner surface

• local pressure losses at distinct items,

• hydrostatic pressure differences because of a difference in height.

All three effects can be captured in this formula:

∆𝑝 = ∆𝑝𝑙𝑜𝑐 + ∆𝑝𝑑𝑖𝑠 + ∆𝑝ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐
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Distributed pressure losses

The Darcy-Weissbach-equation describes distributed pressure losses ∆𝑝𝑑𝑖𝑠 inside the pipe:

∆𝑝𝑑𝑖𝑠 = 𝜆𝜌
𝐿

2𝐷
𝑣2.

Together with the flow velocity

𝑣 =
4�̇�

𝜌𝜋𝐷2

it can be written to:

∆𝑝𝑑𝑖𝑠 = 𝜆
8𝐿

𝜌𝜋2𝐷5
�̇�2,

where the darcy friction factor 𝜆 = 𝜆(𝑅𝑒, 𝜖,𝐷) depends on the Reynolds number 𝑅𝑒 :, the pipe’s surface roughness
𝜖 and the pipe’s inner diameter 𝐷. The Reynolds number is a dimensionless quantity characterizing fluid flows and is
defined as follows:

𝑅𝑒 =
𝐷𝑣𝜌

𝜇
.

𝜇 is the dynamic viscosity of water.

In a pipe, flow is laminar if 𝑅𝑒 < 2300 and turbulent if 𝑅𝑒 > 4000. In district heating pipes, flow is usually turbulent.
The turbulent flow regime can be further distinguished into smooth, intermediate and rough regime depending on the
pipe’s surface roughness.

[1] provides the following approximation formula for 𝜆:

𝜆 = 0.07 ·𝑅𝑒−0.13 ·𝐷−0.14.

A more accurate approximation of the Colebrook-White-equation for flow in pipes is given by this formula:

𝜆 =
1.325

(𝑙𝑛( 𝜖
3.7𝐷 + 5.74

𝑅𝑒0.9 ))2
.

Local pressure losses

Local pressure losses are losses at junction elements, angles, valves etc. They are described by the localized pressure
loss coefficient 𝜁:

∆𝑝𝑙𝑜𝑐 = 𝜁
𝑣2

2
𝜌

It is assumed that each fork has a tee installed. According to [2], localized pressure losses occur downstream of the
element that causes these losses. The values of the localized pressure loss coefficient 𝜁 were taken from [3]. In case
of a tee which splits the stream, 𝜁 is 2. In case the streams join, 𝜁 is 0.75.

It is also assumed that each consumer has a valve installed. Due to the complexity of determining the localized pressure
loss coefficients, these losses have not been considered so far.

Hydrostatic pressure difference

The hydrostatic pressure difference is calculated as follows:

∆𝑝ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 = −𝜌𝑔∆ℎ

Pump power
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The mass flow in the pipes is driven by the pressure difference that is generated by pumps. The pumps have to balance
the pressure losses inside the pipes. The pump power thus depends on the pressure difference along the inlet and return
along one strand of the network, ∆𝑝, the mass flow �̇� and the pump’s efficiency 𝜂𝑝𝑢𝑚𝑝 = 𝜂𝑒𝑙 · 𝜂ℎ𝑦𝑑.

𝑃𝑒𝑙.𝑝𝑢𝑚𝑝 =
1

𝜂𝑒𝑙𝜂ℎ𝑦𝑑

∆𝑝

𝜌
�̇�

In a network consisting of several strands, the strand with the largest pressure losses in inlet and return defines the
pressure difference that the pumps have to generate. The underlying assumption is that the consumers at the end of all
other strands adjust their valve to generate the same pressure losses such that the mass flows that are assumed are met.

6.3.2 Thermal equations

The temperature spread between inlet and return flow defines the amount of heat that is transported with a given mass
flow:

�̇� = �̇� · 𝑐 · ∆𝑇.

A larger temperature spread allows smaller pipe’s diameters, which reduces the investment cost of new pipes or
increases the thermal power of existing pipes.

Heat losses

Heat losses depend on temperature level, mass flow and pipe insulation. Especially the representation of the heat
losses depends a lot on the level of detail of a model. As mentioned above, in the current implementation, the thermal
state of the network is assumed to be in steady state conditions. The temperature at the outlet is calculated as follows:

𝑇𝑜𝑢𝑡 = 𝑇𝑒𝑛𝑣 + (𝑇𝑖𝑛 − 𝑇𝑒𝑛𝑣) · 𝑒𝑥𝑝{−𝑈𝜋𝐷𝐿

𝑐 · �̇�
}.

Where 𝑇𝑖𝑛 and 𝑇𝑜𝑢𝑡 are the temperatures at the start and end of the pipe, 𝑇𝑒𝑛𝑣 the environmental temperature and 𝑈
the thermal transmittance.

In data documentation of pipes in a district heating, you often find the value of the specific heat loss per meter
𝑈𝑠𝑝𝑒𝑐[𝑊/(𝐾𝑚)].

𝑈𝑠𝑝𝑒𝑐 = 𝑈 · 𝜋𝐷 for single pipes
𝑈𝑠𝑝𝑒𝑐 = 𝑈 · 2𝜋𝐷 for double pipes

The temperature of the return flow at the fork is calculated assuming ideally mixed flows, where no heat losses occur
and the heat capacity is constant. The temperature of the mixed flow 𝑇𝑚𝑖𝑥 is calculated for a number 𝑛 of inlet flows,
that are ideally mixed, using the following equation:

𝑇𝑚𝑖𝑥 =

𝑛∑︀
𝑗=1

(�̇�𝑛 · 𝑇𝑛)

�̇�𝑚𝑖𝑥

6.4 References
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CHAPTER 9

What’s New

These are new features and improvements of note in each release

Releases

• v0.0.2 (07/2021)

• v0.0.1 (28.10.2020)

9.1 v0.0.2 (07/2021)

9.1.1 API changes

• nothing new

9.1.2 New features

• Geometry processing modules (`dhnx.gistools`) for creating the ThermalNetwork structure (pipes, forks,
consumers, producers) from user-defined geo-referenced input data. This could also be an import from osmnx.

9.1.3 New components/constraints

• nothing new

9.1.4 Documentation

• nothing new
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9.1.5 Bug fixes

• Avoid bidirectional flow at consumers connections in any case.

• Fixed error of simulation being dependend on the definition of the direction of an edge. When

swapping the direction of an edge in a simple example, wrong results were the consequence. This has been fixed such
that the simulation does not depend on the edge direction, but the actual mass flow.

9.1.6 Known issues

• Simulation: Calculations rely on defined pipe direction

• OSMNetworkImporter not properly working

9.1.7 Testing

• nothing new

9.1.8 Other changes

• nothing new

9.1.9 Contributors

• Johannes Röder

• Joris Zimmermann

• Uwe Krien

9.2 v0.0.1 (28.10.2020)

First release by the oemof developing group.

9.2.1 Contributors

• Jann Launer

• Johannes Röder

• Joris Zimmermann

• Marie-Claire Gering

• oakca
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CHAPTER 10

API Documentation

10.1 network

This module is designed to hold the definition of the central ThermalNetwork object and its components.

This file is part of project dhnx (). It’s copyrighted by the contributors recorded in the version control history of the
file, available from its original location:

SPDX-License-Identifier: MIT

class dhnx.network.ThermalNetwork(dirname=None)
Bases: object

Class representing thermal (heating/cooling) networks.

Parameters

• availalable_components –

• component_attrs –

• components –

• sequences –

• results –

• graph –

Examples

>>> from dhnx.network import ThermalNetwork
>>> tnw = ThermalNetwork('csv_folder')
>>> tnw.is_consistent()
True
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add(class_name, id, **kwargs)
Adds a row with id to the component DataFrame specified by class_name.

Parameters

• class_name –

• id –

• kwargs –

from_csv_folder(dirname)

is_consistent()

Checks that

• pipes connect to existing nodes,

• pipes do not connect a node with itself,

• there are no duplicate pipes between two nodes.

optimize_investment(invest_options, **kwargs)

optimize_operation()

remove(class_name, id)
Removes the row with id from the component DataFrame specified by class_name.

Parameters

• class_name (str) – Name of the component class

• id (int) – id of the component to remove

reproject(crs)

set_defaults()
Sets default values on component DataFrames.

Returns

Return type None

set_timeindex()
Takes all sequences and checks if their timeindex is identical. If that is the case, it sets the timeindex
attribute of the class. If there are no sequences given, the timeindex will keep the default value.

simulate(*args, **kwargs)

to_csv_folder(dirname)

to_nx_graph()

10.2 gistools

This module holds functions for processing the geometry for setting up the geometry of a ThermalNetwork based on
a street geometry and a table of buildings.

This file is part of project dhnx (). It’s copyrighted by the contributors recorded in the version control history of the
file, available from its original location: https://github.com/oemof/DHNx

This module is not fully tested yet, so use it with care.

SPDX-License-Identifier: MIT
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dhnx.gistools.connect_points.calc_lot_foot(line, point)
Calculates the lot foot point.

Parameters

• line (shapely.geometry.LineString) –

• point (shapely.geometry.Point) –

Returns

Return type shapely.geometry.Point

dhnx.gistools.connect_points.check_geometry_type(gdf, types)
Checks, if a geodataframe has only the given geometry types in its GeoSeries.

Parameters

• gdf (geopandas.GeoDataFrame) – DataFrame to be checked.

• types (list) – List of types allowed for GeoDataFrame.

dhnx.gistools.connect_points.create_object_connections(points, lines,
tol_distance=1)

Connects points to a line network.

Generally, the nearest point of the next line is used as connection the point. Depending on the geometry, there
are 3 options, the connection is created: - nearest point is line ending => the connection line starts from this line
ending - nearest point is on the next line:

a) line endings are outside the tolerance => line is split and the nearest point is used as connection
point b) line endings are within the tolerance distance => the next line ending is used as connection
point

The tolerance distance avoids the generation of short line elements. This is for example the case if two buildings
are directly opposite of the street. Using simply the nearest point method could result in very short lines.

Parameters

• points (geopandas.GeoDataFrame) – Points which should be connected to the line.
GeoDataFrame with Points as geometry.

• lines (geopandas.GeoDataFrame) – The line-network to which the Points should
be connected. The line geometry needs to consists of simple lines based on one starting and
one ending point. LineStrings which contain more than 2 points are not allowed.

• tol_distance (float) – Tolerance distance for choosing the end of the line instead of
the nearest point.

Returns

• geopandas.GeoDataFrame (The newly created connection lines)

• geopandas.GeoDataFrame (The updated lines (some lines are split.) – All lines should
only touch at the line endings.

dhnx.gistools.connect_points.create_points_from_polygons(gdf, method=’midpoint’)
Converts the geometry of a polygon layer to a point layer.

Parameters

• gdf (geopandas.GeoDataFrame) –

• method (str) – Method to create a point from a polygon.

Returns geopandas.GeoDataFrame
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Return type GeoDataFrame with a point geometry.

dhnx.gistools.connect_points.line_of_point(point, gdf_lines)

Gets index of geometry of a GeoDataFrame, a point is located next to, with a distance lower than 1e-8.

Parameters

• point (shapely.geometry.Point) –

• gdf_lines (geopandas.GeoDataFrame) –

Returns int, float or str

Return type Index of GeoDataFrame or Warning, if no geometry found.

dhnx.gistools.connect_points.point_to_array(point)
Returns the coordinates of a point as numpy.array

Parameters point (shapely.geometry.Point) –

Returns

Return type numpy.array()

dhnx.gistools.connect_points.process_geometry(lines, consumers, producers,
method=’midpoint’, projected_crs=4647,
tol_distance=2)

This function connects the consumers and producers to the line network, and prepares the attributes of the
geopandas.GeoDataFrames for importing as dhnx.ThermalNetwork.

The ids of the lines are overwritten.

Parameters

• lines (geopandas.GeoDataFrame) – Potential routes for the DHS. Expected geom-
etry Linestrings or MultilineStrings. The graph of this line network should be connected.

• consumers (geopandas.GeoDataFrame) – Location of demand/consumers. Ex-
pected geometry: Polygons or Points.

• producers (geopandas.GeoDataFrame) – Location of supply sites. Expected ge-
ometry: Polygons or Points.

• method (str) – Method for creating the point if polygons are given for the consumers and
producers.

• multi_connections (bool) – Setting if a building should be connected to multiple
streets.

• projected_crs (EPSG integer code) – EPSG Coordinate reference system num-
ber (eg 4647), which is used for the geometry operations. A projected crs must be used!

• tol_distance (float) – Tolerance distance at connection the points to the line network
for choosing the end of the line instead of the lot.

Returns dict – equal to the components of the dhnx.ThermalNetwork: ‘forks’, ‘consumers’, ‘pro-
ducers’, ‘pipes’.

Return type Dictionary with 4 geopandas.GeoDataFrames: The keys of the Dict are
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10.3 model

This module is designed to base classes for optimization and simulation models.

This file is part of project dhnx (). It’s copyrighted by the contributors recorded in the version control history of the
file, available from its original location:

SPDX-License-Identifier: MIT

class dhnx.model.InvestOptimizationModel(thermal_network)
Bases: dhnx.model.Model

Abstract base class for investment optimization models.

is_consistent()

class dhnx.model.Model(thermal_network)
Bases: object

Abstract base class for different kind of models.

get_results()

is_consistent()

setup()

solve()

class dhnx.model.OperationOptimizationModel(thermal_network)
Bases: dhnx.model.Model

Abstract base class for operational optimization models.

is_consistent()

class dhnx.model.SimulationModel(thermal_network)
Bases: dhnx.model.Model

Abstract base class for simulation models.

is_consistent()

10.4 optimization

This module is designed to hold optimization model implementations. The implementation makes use of oemof-solph.

This file is part of project dhnx (). It’s copyrighted by the contributors recorded in the version control history of the
file, available from its original location:

SPDX-License-Identifier: MIT

class dhnx.optimization.OemofInvestOptimizationModel(thermal_network, settings, in-
vestment_options)

Bases: dhnx.model.InvestOptimizationModel

Implementation of an invest optimization model using oemof-solph.

. . .

settings
Dictionary holding the optimisation settings. See .

Type dict
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invest_options
Dictionary holding the investment options for the district heating system.

Type dict

nodes
Empty list for collecting all oemof.solph nodes.

Type list

buses
Empty dictionary for collecting all oemof.solph.Buses of the energy system.

Type dict

es
Empty oemof.solph.EnergySystem.

Type oemof.solph.EnergySystem

om
Attribute, which will be the oemof.solph.Model for optimisation.

Type oemof.solph.Model

oemof_flow_attr
Possible flow attributes, which can be used additionally: {‘nominal_value’, ‘min’, ‘max’, ‘variable_costs’,
‘fix’}

Type set

results
Empty dictionary for the results.

Type dict

check_input():
Performs checks on the input data.

complete_exist_data():
Sets the investment status for the results dataframe of the pipes.

get_pipe_data():
Adds heat loss and investment costs to pipes dataframe.

setup_oemof_es():
The energy system es is build.

setup():
Calls check_input(), complete_exist_data(), get_pipe_data(), and setup_oemof_es().

check_existing()
Checks if the attributes existing and hp_type are given in the pipes table. If not, the attribute is added, and
set to None / 0.

Checks for all existing pipes, if the heatpipe type is given in the pipe type table .in-
vest_options[‘network’][‘pipes’], and if the capacity is greater than zero.

check_input()
Check 1:

Check and make sure, that the dtypes of the columns of the sequences and the indices (=ids) of the forks,
pipes, producers and consumers are of type ‘str’. (They need to be the same dtye.)

Check 2:
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Firstly, it is checked, if there are any not-allowed connection in the pipe data. The following connections
are not allowed:

• consumer -> consumer

• producer -> producer

• producer -> consumer

• consumer -> fork

Secondly, it is checked, if a pipes goes to a consumer, which does not exist.

Check 3

Checks if graph of network is connected.

An error is raised if one of these connection occurs.

get_results_edges()
Postprocessing of the investment results of the pipes.

prepare_heat_demand()
This method performs the pre-processing of the heat demand data, depending on the given optimisation
settings.

• If attribute ‘P_heat_max’ not given at the consumers, the maximum heat demand is calculated from
the timeseries and added the consumers table.

• If the optimisation setting ‘heat_demand’ == scalar, the number of time steps of the optimisation is set
to 1, and the ‘P_heat_max’ values are copied to the consumers heat flow sequences (which is always
the input for the optimisation model).

• The consumers heat flow sequences are multiplied by the simultaneity factor.

• Finally, a sufficient length of the heat demand timeseries is checked.

Returns

• Updated .network.components[‘consumers’] and

• .network.sequences[‘consumers’][‘heat_flow’]

remove_inactive()
If the attribute active is present in any of the components columns, or in any the investment options tables,
all rows with active == 0 are deleted, and the column active is deleted.

setup()
Calls remove_inactive() check_input(), prepare_heat_demand(), complete_exist_data(), and
setup_oemof_es().

setup_oemof_es()
The oemof solph energy system is initialised based on the settings, and filled with oemof-solph object:

The oemof-solph objects of the consumers and producers are defined at the consumers and producers
investment options.

For the heating infrastructure, there is a oemof.solph.Bus added for every fork, and a pipe component for
every pipe as defined in /network/pipes.csv.

solve()
Builds the oemof.solph.Model of the energysystem es.

10.4. optimization 41



oemof heat documentation, Release 0.0.2

class dhnx.optimization.OemofOperationOptimizationModel(thermal_network)
Bases: dhnx.model.OperationOptimizationModel

Implementation of an operation optimization model using oemof-solph.

get_results()

setup()

solve()

dhnx.optimization.optimize_operation(thermal_network)
Takes a thermal network and returns the result of the operational optimization.

dhnx.optimization.setup_optimise_investment(thermal_network, invest_options,
heat_demand=’scalar’, num_ts=1,
time_res=1, start_date=’1/1/2018’, fre-
quence=’H’, solver=’cbc’, solve_kw=None,
solver_cmdline_options=None,
simultaneity=1, bidirec-
tional_pipes=False, dump_path=None,
dump_name=’dump.oemof’,
print_logging_info=False,
write_lp_file=False)

Function for setting up the oemof solph operational Model.

Parameters

• thermal_network (ThermalNetwork) – See the ThermalNetwork class.

• invest_options (dict) – Dictionary holding the investment options for the district
heating system.

• heat_demand (str) – ‘scalar’: Peak heat load is used as heat consumers’ heat demand.
‘series’: Heat load time-series is used.

• num_ts (int) – Number of time steps of optimisation.

• time_res (float) – Time resolution.

• start_date (str or datetime-like) – Startdate for oemof optimisation.

• frequence (str or DateOffset) – Lenght of period.

• solver (str) – Name of solver.

• solve_kw (dict) – Solver kwargs.

• solver_cmdline_options (dict) – Dictionary with command line options for
solver.

• simultaneity (float) – Simultaneity factor.

• bidirectional_pipes (bool) – Bidirectional pipes leads to bi-directional flow at-
tributes at the heatpipeline components {‘min’: -1, bidirectional: True}.

• dump_path (str) – If a dump path is provided, the oemof dump file is stored.

• dump_name (str) – Name of dump file.

• print_logging_info (bool) – Additional logging info is printed.

• write_lp_file (bool) – Linear program file is stored
(‘User/.oemof/lp_files/DHNx.lp’).

Returns oemof.solph.Model
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Return type The oemof.solph.Model is build.

dhnx.optimization.solve_optimisation_investment(model)

Parameters model (oemof.solph.Model) – The oemof model, which is optimized.

Returns

dict –

• ‘oemof’ : Complete “oemof” results of the energy system optimisation (.results[‘main’]).

• ’oemof_meta’ : Meta results of oemof solph optimisation.

• ’components’ : ‘pipes’ : Investment results of pipes.

Return type Results of optimisation. Contains:

10.5 simulation

This module is designed to hold implementations of simulation models. The implementation uses oemof/tespy.

This file is part of project dhnx (). It’s copyrighted by the contributors recorded in the version control history of the
file, available from its original location:

SPDX-License-Identifier: MIT

class dhnx.simulation.SimulationModelNumpy(thermal_network, rho=971.78, c=4190,
mu=0.00035, eta_pump=1, tolerance=1e-10)

Bases: dhnx.model.SimulationModel

Implementation of a simulation model using numpy.

prepare()

solve()

get_results()

prepare_hydraulic_eqn()
Prepares the input data for the hydraulic problem.

prepare_thermal_eqn()
Prepares the input data for the thermal problem.

solve_hydraulic_eqn()
Solves the hydraulic problem.

solve_thermal_eqn()
Solves the thermal problem.

_concat_scalars(name)
Concatenates scalars of all components with a given variable name

Parameters name (str) – Name of the variable

Returns concat_sequences – DataFrame containing the sequences

Return type pd.DataFrame

_concat_sequences(name)
Concatenates sequences of all components with a given variable name

Parameters name (str) – Name of the variable
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Returns concat_sequences – DataFrame containing the sequences

Return type pd.DataFrame

static _set_producers_mass_flow(m)
Sets the mass flow of the producer.

Parameters m (pd.DataFrame) – DataFrame with all know consumer mass flows.

Returns m – DataFrame with all know mass flow of consumers and producer.

Return type pd.DataFrame

_calculate_pipes_mass_flow()
Determines the mass flow in all pipes using numpy’s least squares function.

Returns pipes_mass_flow – Mass flow in the pipes [kg/s]

Return type pd.DataFrame

_calculate_reynolds()
Calculates the Reynolds number.

𝑅𝑒 =
4�̇�

𝜋𝜇𝐷

Returns re – Reynolds number for every time step and pipe [-]

Return type pd.DataFrame

_calculate_lambda(reynolds)
Calculates the darcy friction factor.

𝜆 = 0.07 ·𝑅𝑒−0.13 ·𝐷−0.14

Parameters re (pd.DataFrame) – Reynolds number for every time step and pipe [-]

Returns lamb – Darcy friction factor for every time step and pipe [-]

Return type pd.DataFrame

_calculate_pipes_distributed_pressure_losses(lamb)
Calculates the pressure losses in the pipes.

Equal-sized inlet and return pipes are assumed which leads to equal mass flows and pressure losses for
both. This introduces the initial factor of 2 in the equation.

𝛿𝑝 = 2 · 𝜆 8𝐿

𝜌𝜋2𝐷5
�̇�2.

Parameters lamb (pd.DataFrame) – Darcy friction factor for every time step and pipe [-]

Returns pipes_pressure_losses – DataFrame with distributed pressure losses for inlet and re-
turn for every time step and pipe [Pa]

Return type pd.DataFrame

_calculate_pipes_localized_pressure_losses()
Calculates localized pressure losses at the nodes.

∆𝑝𝑙𝑜𝑐 =
8𝜁�̇�2

𝜌𝜋2𝐷4

Returns nodes_pressure_losses – Localized pressure losses at the nodes [Pa]

Return type pd.DataFrame
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_calculate_global_pressure_losses(pipes_pressure_losses)
Calculates global pressure losses.

Finds the path with the maximal pressure loss among from the set of paths from the producer to all con-
sumers.

Parameters pipes_pressure_losses (pd.DataFrame) – Total pressure losses for ev-
ery time step and pipe [Pa]

Returns global_pressure_losses – Global pressure losses [Pa]

Return type pd.DataFrame

_calculate_pump_power(global_pressure_losses)
Calculates the pump power.

𝑃𝑒𝑙.𝑝𝑢𝑚𝑝 =
1

𝜂𝑒𝑙𝜂ℎ𝑦𝑑

∆𝑝

𝜌
�̇�

Parameters global_pressure_losses (pd.DataFrame) – Global pressure losses [Pa]

Returns pump_power – Pump power [W]

Return type pd.Series

_calculate_exponent_constant()
Calculates the constant part of the exponent that determines the cooling of the medium in the pipes.

𝑒𝑥𝑝𝑐𝑜𝑛𝑠𝑡 = −𝑈𝜋𝐷𝐿

𝑐

Returns exponent_constant – Constant part of the exponent [kg/s]

Return type np.matrix

_calc_temps(exponent_constant, known_temp, direction)
Calculate temperatures

𝑇𝑜𝑢𝑡 = 𝑇𝑒𝑛𝑣 + (𝑇𝑖𝑛 − 𝑇𝑒𝑛𝑣) · 𝑒𝑥𝑝{𝑒𝑥𝑝𝑐𝑜𝑛𝑠𝑡 · 𝑒𝑥𝑝𝑣𝑎𝑟} = 𝑇𝑜𝑢𝑡 = 𝑇𝑒𝑛𝑣 + (𝑇𝑖𝑛 − 𝑇𝑒𝑛𝑣) · 𝑒𝑥𝑝{−𝑈𝜋𝐷𝐿

𝑐 · �̇�
}

Parameters

• exponent_constant (np.array) – Constant part of the exponent [kg/s]

• known_temp (pd.DataFrame) – Known temperatures at producers or consumers [°C]

• direction (+1 or -1) – For inlet and return flow [-]

Returns temp_df – DataFrame containing temperatures for all nodes [°C]

Return type pd.DataFrame

_set_temp_return_input(temp_inlet)
Sets the temperature of the return pipes at the consumers.

𝑇𝑐𝑜𝑛𝑠,𝑟 = 𝑇𝑐𝑜𝑛𝑠,𝑖 − 𝑇𝑐𝑜𝑛𝑠,𝑑𝑟𝑜𝑝

Parameters temp_inlet (pd.DataFrame) – Known inlet temperature [°C]

Returns temp_return – Return temperature with the consumers values set [°C]

Return type pd.DataFrame
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_calculate_pipes_heat_losses(temp_node)
Calculates the pipes’ heat losses given the temperatures.

�̇�𝑙𝑜𝑠𝑠𝑒𝑠 = 𝑐 · �̇� · ∆𝑇

Parameters temp_node (pd.DataFrame) – Temperatures at the nodes [°C]

Returns pipes_heat_losses – Heat losses in the pipes [W]

Return type pd.DataFrame

dhnx.simulation.simulate(thermal_network, results_dir=None)
Takes a thermal network and returns the result of the simulation.

Parameters thermal_network –

Returns results

Return type dict
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